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ABSTRACT

Ionospheric fine structure research uses a variety of sensors to study ionospheric           

events across the space. The heterogenous plasma characteristics (density,   k, )( ω       

temperature, velocity) of the ionosphere are not fully spatially or temporally resolved even            

by the best radar systems due to finite beamwidth, finite statistical measurement time, and             

limited access to wavenumber k [Lind 2013]. Passive bistatic radar offers opportunities to            

researchers at little capital expense (starting at $10 for a USB receiver with simple yagi and               

laptop) by “stealing” existing broadcast signals such that coherent ionospheric events can be            

detected with compact antennas and receivers.

We present preliminary results on two fronts:

(1) [Matt Kidd] Developing better quantitative metrics for when signals should be used or             

neglected as part of the target cross-correlation and/or interferometry processes, based on the            

transmitter signal self-ambiguity function in range-Doppler space.

(2) [Michael Hirsch] Developing a blind target detection system that without ongoing human            

training can detect events of interest while rarely falsely declaring clutter or interference as             

valid targets.



INTRODUCTION

MIT Haystack and the University of Washington have been at the forefront of passive             

radar ionospheric research over the past two decades with the ISIS distributed passive radar             

instrument. Until recently [Lind 2013], only a few 150kHz segments of the FM broadcast             

spectrum could be simultaneously captured. Storage and sharing of data has been problematic            

due to limitations in instrument site storage, processing, and network bandwidth. All three            

barriers have been pushed down with $130 USB 3.0 4TB hard drives with sustained sequential              

100MB/sec read/write speeds, powerful quad-core $500 desktop PCs, and nearly-ubiquitous         

50Mbps internet connections. The RF receivers themselves have markedly improved, with          

recent COTS models allowing 120MHz streaming bandwidth versus the 2MHz streaming          

bandwidth previously used in the ISIS instrument [F. Lind, private comm. Nov 2013].

We sought to gain insight into the quality of passive radar ambiguity functions that             

can be obtained from typical FM broadcasts in the United States. Two of the most ubiquitous               

types of broadcasts are the talk-heavy National Public Radio (NPR) broadcasts and the primarily             

musical broadcasts of commercial “classic rock” stations. Rock music station aural content           

consists of mostly musical programming interspersed with commercials and brief periods of           

broadcaster commentary between songs and advertisements. It was our intuition, and the           

qualitative experience of our collaborator Frank Lind at the MIT Haystack observatory, that the             

NPR self-ambiguity functions would be worse than the rock stations due to the relatively long              

periods of silence inherent in the news and interview format of the NPR station. The FM               

station self-ambiguity functions, on the other hand, would be of higher and more consistent             

quality (more thumbtack-like in the range-Doppler space) since the commercial operators have           



a substantial interest in keeping the pacing of the programming fast and the amount of dead air                

at a minimum. The aim of this study is to examine how correlated the content of the                

broadcast is with the self-ambiguity function quality -- for example, how reliably do the pauses              

in conversations on talk radio cause poor ambiguity function quality compared to a rock station              

broadcast.

Given the countless terabytes of data collected over the past fifteen years, with an ever              

increasing data rate collection due to additional sites and broader RF bandwidth, the need for              

automated target detection is increasingly urgent not only for ISIS, but for other passive radar              

instruments. The larger the data bandwidth, the larger the need to prune the data early for               

relevant events due to limited HDD resources. Inexpensive desktop PCs are capable of on-line             

target detection as we will show in this report, written in straightforward MATLAB or Python              

script. We use a blind machine vision process that does not require human algorithm “training”              

or extensive fiddling with parameters. We simply started with values that heuristically made            

sense, and made only minor if any adjustments to the initial heuristically chosen parameters.             

We found empirically that some data has highly unstable cross-ambiguity functions with signal            

to clutter ratio (SCR) varying over the entire dataframe (range-Doppler plot) by several orders             

of magnitude in a non-stationary way. Such variations would be vexing to a standard machine              

vision algorithm. A future pathway to better exploiting these data intermixed with sporadic bad             

data may be on-line qualification of dataframes by measured self-ambiguity of the reference            

signal. We present machine vision results and MATLAB code at         

http://heaviside.bu.edu/~mhirsch/isis



BACKGROUND: PASSIVE BISTATIC RADAR

As discussed in [Sahr 1997,Lind 2013], coherent ionospheric returns are readily          

detectable using passive bistatic radar that exploit FM broadcast signals as the incident            

radar waveform. Until the past decade or so, extensive detection of aircraft and the             

ionosphere have been difficult due to RF/data bandwidth and on-line digital signal           

processing constraints, along with the simple difficulty of transporting gigabytes of data           

without a high-speed Internet connection [Sahr 1997, Willis]. Some of the early challenges of             

the high-performance passive radar activated in 1996 by Sahr and Lind included the intense             

computational load [Morabito] of computing the lag products [Sahr 1997]. Analog NTSC           

broadcasts contained a strong, low-entropy burst to sync each frame that made detection of             

overspread targets such as coherent ionospheric returns difficult [Sahr 1997]. Test results           

from the past decade showed cellular GSM transmission in the 900MHz and 1.8GHz bands to              

be of insufficient signal strength and RF bandwidth to be useful for ionospheric returns with              

the passive radars of that time [Willis].

A first step in evaluating the feasibility of passive bistatic radar for detection of a target               

is considering the power density at the target location due to the FM broadcast transmitter in               

Eqn.(A-1)[Willis]. Willis notes that the typical highest legal power in the United States is 250kW              

for FM broadcasts and 1MW for digital TV broadcasts in the UHF channels. Assuming ,              F T = 1

the maximum power density for the Siena College/Dartmouth pairing using the azimuthally           

omnidirectional WQBJ 50kW ERP transmitter relevant to the 2010-Aug-03 event to be           

discussed in the Blind Target Detection section of this report is           4.9Smax = 50×103
4π(400×10 )3 2 = 2

nW/m2 = -76dBW/m2, where 400km has been selected as the minimum possible range for             



ionospheric returns between these sites (per Lind, private comm.).

 [Watts/m^2]FS = P GT T
4πR2T

2
T (A-1)

where:

is the transmitter output power at the matched antenna terminalsP T

is the antenna gain relative to an isotropic radiator in the direction of the target → FM,GT                 

TV, and cellular transmitters radiation patterns are generally slightly downtilted to focus their            

energy at the ground as much as possible--passive bistatic radar exploits the sidelobes of             

these transmitter radiation patterns.

is the distance from transmitter to targetRT

is the pattern propagation factor [Mahafza 2000], which is a catch-all for transmissionF T             

path losses besides free-space loss accounted for in the term. These losses can be         1
4πR2      

significant in certain bistatic scenarios and include multipath, atmospheric (not very          

relevant below 1GHz) , diffraction, et al.

This transmitter signal when used as a radar waveform has a self-ambiguity function            

[Woodward, Richards, Mahafza, Willis] defined in Eqn. (A-2).

 χ(τ, )| (t)s (t )e dt|| fd
2 = | ∫

∞

−∞
s * + τ j2πf td 2 (A-2)

Some practical outcomes of Eqn. (A-2) have been described in the ambiguity function            

analysis section of this report. [Willis] cites a typical FM broadcast bandwidth of 50 kHz,              

resulting in a monostatic range resolution of 3 km, while the HDTV bandwidth of 6 MHz   c
2B             

results in a monostatic range resolution of 25 m--adequate for detection of ionospheric   c
2B          



turbulence of decameter to kilometer scale. Of course, actual bistatic range resolution           

computations are a bit more complex than this, but this back-of-envelope estimate builds            

intuition on the relative quality of transmitter signal candidates to exploit.

The geometric orientation of a target with respect to the transmitter and receiver            

sites can have a profound impact on the cross-ambiguity function. We do not have the              

space to discuss the fine points in this report, but let us simply state that for the orientation                 

in Fig. A.1, the cross-ambiguity shape is very nearly of the self-ambiguity [Willis, Tsao].             

This does not necessarily mean the geometry of Fig. A-1 is the “best,” since perhaps the               

return signal will have better SNR for another bistatic geometry due to different clutter,             

illumination, or due to other factors. [Tsao] shows that for geometries approaching and            

beyond that of Fig. A-2 with a 90 degree bistatic angle, the shape of the cross-ambiguity               

function is likewise little changed from that of the self-ambiguity function. As the target             

comes nearer to being between the sites, with a bistatic angle in the 120 degree to 150                

degree range as in Fig. A-3, the cross-ambiguity function spreads in range and Doppler             

and the sidelobes locations themselves move [Tsao,Willis]. In the limiting case of bistatic            

angle near 180 degrees in Fig. A-4, the cross-ambiguity function becomes very broad            

[Tsao] and so alternative means of processing target returns may be warranted. This does             

not mean such a forward-scatter radar is useless--as shown by [Willis], the large forward             

scattering cross-section of targets can make such radars a useful “trip-wire” detector. For            

this project, we are more interested in target returns with bistatic angles less than about              

135 degrees, where the cross-ambiguity shape is not tremendously changed from the           

self-ambiguity shape. ISIS can operate with the reference receiver and scattering receiver           



at one site (e.g. at MIT Haystack), but for greater sensitivity and opportunistic reasons,             

often ISIS picks up the reference signal x(t) at one site and gathers the scattered signal y(t) at                          

another site.

Figure A-1: pseudo-monostatic 0-degree bistatic angle

Figure A-2: 90 degree bistatic angle



Figure A-3: >120 degree bistatic angle

Figure A-4: 180 degree bistatic angle forward scatter geometry

Due to space, scope and IP constraints, we have omitted discussion of the bistatic             

radar range equation, interference and main transmitter calibration. Certainly these are          

important issues in system design, particularly with regard to the need for precise time and              

frequency synchronization of RF sampling [Sahr, Lind 2013]. At this time we forego further such              

discussion. The publicly available ISIS algorithm block diagram [Lind 2013] is shown in Fig. A-5.



Figure A-5: ISIS signal processing block diagram [Lind 2013]

We conclude the background on passive radar with selected details pertinent to passive            

radar detection of coherent ionospheric plasma turbulence. [Willis] notes that such          

turbulence can disrupt waves traveling through the ionosphere up to about 2 GHz, which             

includes life-critical navigation services such as GPS and aircraft satellite transponders. Better           

characterization of such turbulent events requires extended data collection. Since we do not            

know a priori when or where such events are occurring, we cannot count on incoherent radar               

scatter (ISR) sites alone to provide the desired data volume. Since the passive receiver             

antennas have a relatively broad beamwidth [Lind 2013], the only time limitation is hard drive              

space (which was a nearly crippling factor in the 1990s [Sahr 1997]) but has become              

somewhat more tractable with technology advances. Of course, receiver bandwidths and the           



desire to use multistatic configurations brings the datastream bandwidth up to challenging           

levels again--necessitating data pruning and curation at an early stage.

A dominant scattering mechanism of these ionospheric turbulences is thought to be           

Bragg scatter, the effects of which have also manifested in ISR spectrum [Akbari]. Following             

the development in [Sahr 2007], we define an incident quasi-monochromatic wavevector           k→i

coming from the FM transmitter x(t). Using the assumption [Strømme,Thidé,Sahr 2007] that           

only longitudinal (along-B) ion-acoustic density waves yield significant scatter, then the          

scattered wavevector  and phonon region wavenumber  are related by Eqn. (A-3).−k→s = k→i k→p

  kk→i = k
→
p + k

→
s ⇔ k→i = k

→
p − k

→

i⇔ 2→

i = k
→
p (A-3)

Observe that , which is representative of classical Bragg scatter. This  /2λk = λ
2π ⇒ 1 i = λp         

means in simple terms that a coherent or incoherent radar will detect only scattering at a               

wavelength ½ that of the incident waveform x(t). A 100 MHz FM transmitter signal of              

wavelength 3 meters will yield Bragg scatter from ion-acoustic waves with wavelength 1.5            

meters. By inspection we see it is useful to have radars with a wide variety of incident                

wavenumbers. The ISIS system and upcoming passive radar systems cover the 50MHz to            

650MHz range and so should be useful for coherent ionospheric returns at a variety of              

wavenumbers.

BACKGROUND: FM BROADCAST BAND SIGNALS

As FM broadcast signals are the primary source of radar transmissions for this project,             



it is useful to briefly discuss their characteristics. For each FM broadcast transmitter, there             

exists an analytic function m(t) comprised of baseband audio (music, voice) covering           

approximately the frequency range 0..15kHz. The monaural L+R signal of unit amplitude            (t)sFM

detected by RawPlayer0.m is described in Eqn. (B­1) [Lathi]:

(t) (ω t θ (t))sFM = cos c + kw m (B­1)

where:

 the integral of the modulation m(t)(t) (x)dxθm = ∫
t

−∞
m

is the FM carrier frequency in radians/sec (e.g.  ).wc π 9.5 02 ∙ 8 × 1 6

 is the independent time variable in seconds.t

is the modulation index, representing the ratio of peak deviation to peak modulation frequency­­in kw                          

FM broadcast,  .kw ≈ 5

 is a dummy variable of integration.x

The relatively simple­looking form of in Eqn. (B­1) leads to an RF bandwidth of theoretically          (t)sFM                    

infinite extent [Lathi, Lee, Carson]. A formal analysis [Lathi] involving the n­th order Bessel function                             Jn

yields the equivalent form of unit amplitude   expressed in Eqn. (B­2).(t)sFM

(t)  (k ) (ω t ω t)sFM =   ∑
∞

n=−∞
Jn w cos c + n m (B­2)

Observe from Eqn. (B­2) that that an infinite number of sidebands exist at frequencies                         

, and that the spectrum of these sidebands of will decay as, , ..,  ωc ± ωm ωc ± 2ωm . ωc ± nωm                   (t)sFM      

for the FM broadcast case as shown in Fig. B­1. We repeat here without proof the(k )Jn w = 5                              

well­known Carson’s Rule [Lathi] for the RF bandwidth containing approximately 98% of the                BFM          



signal energy: , where is the maximum modulation frequency contained in m(t).    (k )fBFM = 2 ω + 1 m     fm                

The practical FM transmitter will likely generate the signal at a frequency much lower than [Lathi],                              fc  

allowing the designer to filter out unnecessary sidebands above and below , since each sideband                      n = 1      

already contains m(t).

Figure B­1: FM broadcast sidebands relative amplitude

Observe that contains infinitely many copies of m(t). The sideband with the copy  (t)sFM            

of m(t) most suitable for demodulation is the lowest order sideband residing at frequency             

. The successful demodulation of FM broadcasts in the 88-108MHz band requires:ωc + ωm

(1) pre-demodulation low-pass filtering to eliminate the stereo pilot at kHz, the9fc + 1

DSB L-R channel from kHz to kHz, and the narrowband FM SCA3fc + 2 3fc + 5

carriers centered at kHz and kHz.7fc + 6 2fc + 9



(2) a near-ideal differentiator yielding [Lathi] as in Eqn. (B-3) to recover the     (t)ṡFM        

modulation m(t).

 (t) (cos(ω t  k θ (t))) m(t)) (ω t θ (t))ṡFM = d
dt c +   ω m = (ωc + kω sin c − π + kω m (B-3)

By inspection of in Eqn. (B-3), observe that the desired m(t) is recovered in purely   (t)ṡFM             

analog receivers by a simple low-pass filter envelope detector, since . In actuality, a          fm≪ fc    

variety of methods each with their strengths and weaknesses exist for FM demodulation            

[Lathi]. In the digital domain, several discrete-time solutions have arisen, particularly for           

embedded systems with limited power/processing resources. The resources needed for         

low-pass filtering and envelope detection in the digital domain are not trivial for small             

systems, and so an alternative method has been widely adopted for simple FM            

demodulation, as implemented in this project. We have been dealing with the real form of              

unit amplitude   , where(t) [s (t)]sFM = ℜ ˆFM

 (t) (t)  s (t) (jk θ (t)) (jω t) (j(ω t θ (t)))ŝFM = sI + j Q =  exp w m exp c = exp c + kω m (B-4)

Letting in Eqn. (B-4), we observe that m(t) is also accessible by the (t) t θ (t)ϕ = ωc + kω m             

derivative of the complex phase . From elementary calculus and algebraic     (t)ϕ = tan−1 s (t)I

s (t)Q
     

manipulation detailed in [Lyons], we obtain an algorithm for this derivative in Eqn. (B-5).

 ϕ(t)d
dt =   s (t) + s (t)I

2
Q
2

s (t) s (t) −s (t) s (t)I
d
dt Q Q

d
dt I

(B-5)

The demodulator we implemented as a first pass in MATLAB used a central            

difference approximation to the derivative operation. Rather than implementing M-tap FIR          

filters for the N-point central difference stencil, we simply took the 3-point stencil central             



difference of the arctangent of Q/I. This gave audibly less distortion than both the 2-point              

stencil forward difference and the 3-point central difference implementation of the Lyons           

algorithm. Specifically we entered into MATLAB:

m = central_diff( unwrap( atan2(Q,I) ), Ts);

where:

central_diff() is a 3-point stencil central difference algorithm written by [Canfield].

unwrap() is the built­in MATLAB function allowing angles to continue beyond  .− , ][ π π

atan2() is the built­in MATLAB function computing four­quadrant arctangent.

Ts is the uniform sampling interval →  td

 and (t)Q = sQ (t)I = sI

Note that arctangent is a computationally expensive operation­­a DSP designer may use industry                       

methods for creating efficient stencils suitable for sufficiently accurate for the digital difference operation.                         

We invoke the fundamental theorem of calculus in Eqn. (B­6),  (ω t  k (x)dx) m(t)d
dt c +   w ∫

t

−∞
m = ωc  + kω

(B­6)

where by inspection is a nuisance DC offset and is a constant scalar, both of which are trivially      ωc               kw                  

removed from m(t). The demodulated monaural content may audibly add to the reader’s intuition when                           

viewing plots of the self­ambiguity discussed in the ambiguity function analysis section.



DESCRIPTION OF METHODOLOGY: AMBIGUITY FUNCTION ANALYSIS

The signals of FM stations 106.7 WIZN and 89.5 WVPR were measured using an ISIS              

array receiver at 150 kHz RF bandwidth for a period of one hour each by Frank Lind of MIT                  

Haystack Laboratory. Frank Lind processed the data to range and doppler plots by performing             

the ambiguity calculation as has been described in detail by Sahr et al [1997]. The ambiguity               

functions were averaged over two second intervals of FM broadcast, this being the minimum             

amount of time required to generate adequate-quality ambiguity functions. Both the ambiguity           

matrices and the I and Q data were saved to proprietary binary files, and Lind provided us with                 

the Python code to convert these into more convenient HDF5 MATLAB files. Unfortunately,            

there was an error in the data collection that resulted in much of the NPR data unusable; while                 

all 60 minutes of the rock broadcast were successfully processed into ambiguity functions and             

I and Q data, only 17 minutes of the NPR data ended up being usable. This limited data,                 

however, seems to have been enough to do some meaningful analysis.

Two metrics were applied to these data, the first being the instantaneous bandwidth of             

the I and Q data, shown in Eqn. (C-1). Eqn. (C-1) provides an estimation of the bandwidth of                 

the FM signal at any given sample; this approximation has been discussed by Barnes [1992].              

Lind uses this metric to determine whether or not to exclude a given sample of the FM                

broadcast from the ambiguity analysis -- if the instantaneous bandwidth is below a certain             

threshold, the sample is excluded from the ambiguity analysis. In certain circumstances this            

practice allows for otherwise unusable broadcasts to be used, although the number of samples             

excluded can reach 50% in order to generate a high enough quality ambiguity function [Lind              

2013].



(n)  | |Bi =   18π ln I (n−1) + Q (n−1)2 2
I (n+1) + Q (n+1)2 2

(C-1)

The second metric we used was the the peak-to-side-lobe ratio (PSLR) [Mahafza]. This is a              

standard measure of ambiguity function quality, calculated by simply taking the ratio of the             

magnitude of the most intense peak of the ambiguity function to the second most intense side               

lobe peak expressed in dB.

Finally, the I and Q data were demodulated to monophonic audio in MATLAB using the              

function RawPlayer0.m, and this audio was synchronized with the ambiguity functions and           

updating plots of the PSLR and instantaneous bandwidth of the broadcast signal. A figure with              

three subplots was generated using MATLAB; the top subplot is a graph of PSLR and              

instantaneous bandwidth averaged over two seconds and 0.5 seconds, respectively. The          

bottom left graph is a graph of an estimate of the power spectral density of a half second of                  

the audio signal, plotted from 0 to 20 kHz generated using the MATLAB function periodogram.              

The bottom right image is the range-doppler ambiguity of two seconds of the radio broadcast.              

These figures were generated in half-second increments and synchronized with the          

demodulated audio, and MATLAB was used to interleave the audio and video frames, creating             

an AVI video. A typical frame of the video is shown in Fig. C1, and selected videos can be                  

found in the supplementary materials of this paper.



Figure C1: typical video frame

RESULTS: AMBIGUITY FUNCTION ANALYSIS

While much of our analysis was largely qualitative in nature -- matching up features of              

the audio of the FM broadcast with changes in the ambiguity functions through watching the              

videos we produced, we were able to do some quantitative analysis of these data. But first we                

will examine some of the trends and more interesting phenomenological observations we were            

able to glean from the qualitative video analysis.



 

Figure C2, characteristic ambiguity functions and the PSLR and instantaneous bandwidth of a
one-minute excerpt of an NPR broadcast



Figure C2a shows the PSLR and instantaneous bandwidth of the first minute of the NPR              

program. This figure nicely encapsulates the relationship of the content of the broadcast to             

quality of the ambiguity functions. The first seven seconds of the broadcast are the intro              

music of the program, followed by 4-5 seconds of dead silence, followed by 45 seconds of a                

back-and-forth interview between the host and the guest on the program. Characteristic           

ambiguity functions for the intro music and silence are shown in figure C2b and C2c,              

respectively. The introductory music produced a good-quality ambiguity function, with the          

PSLR approaching -20 dB, while the silence produced an awful ambiguity function, with PSLR             

approaching 0 dB. Once the host and guest began their conversation, the ambiguity function             

fluctuated between good and poor quality ambiguity functions. Clearly, the long period of            

silence towards the beginning of the broadcast correlated with the poor ambiguity function            

produced during that period. The behavior of the ambiguity function PSLR and the            

instantaneous bandwidth of the broadcast during the conversation phase is typical of           

conversations throughout the NPR broadcast -- periods of good ambiguity performance are           

interspersed with poor ambiguity functions, corresponding to pauses in the conversations.          

Many of these pauses can be seen in the conversation phase of figure 2, where the half-second                

averages of instantaneous bandwidth drop down near the level of the silence in the first portion               

of the audio. Characteristic images of bad-quality and good-quality ambiguity functions are           

shown in figure C2d and C2e, respectively. Note that the good-quality ambiguity function in C2e              

is not as good as the ambiguity function of the intro music phase, and the bad-quality               

ambiguity function in C2d is not as bad as the ambiguity function of the silence phase.

Figures C3 and C4 show a plot of instantaneous bandwidth and PSLR for the rock and               



NPR station, respectively. Note in figure C3 the minimums of the instantaneous bandwidth at             

approximately 65 seconds and 335 seconds. These decreases correspond to brief intervals           

between songs where the disc jockey (DJ) is speaking. Note that the instantaneous bandwidth             

during these speaking intervals are still quite high compared to the NPR broadcast in figure C4,               

and the PSLR remains relatively good through these intervals. This is typical of the the rock               

broadcast -- the instantaneous bandwidth of the rock broadcast rarely drops to the low levels              

(~200 Hz) that is typically seen throughout the NPR broadcast. The sudden increase in             

instantaneous bandwidth around 280 seconds in figure C4 correspond to a clip of the guest’s              

television program being played. This clip was much “busier” than the preceding and            

succeeding conversation -- the dialogue is fast paced, there is constant low background noise,             

etc. The PSLR of the ambiguity functions correspondingly increases in this region of the NPR              

broadcast.

Figure C3: PSLR and average instantaneous bandwidth of a typical stretch of a rock broadcast



Figure C4: PSLR and average instantaneous bandwidth of a typical stretch of NPR broadcast

Table C1 summarizes some basic statistics of the two broadcasts and their ambiguity

performance. These statistics confirm both our intuition and the conclusions drawn from the

more qualitative discussion above. The average PSLR is better for the rock broadcast, and

perhaps even more importantly, the PSLR variance for the NPR broadcast is more than

double the rock broadcast. So, not only does is the NPR station have a higher average PSLR,

there is more variability as well. This manifests in the number of 2-second ambiguity functions

with PSLR above a certain threshold -- practically no ambiguity functions for the rock

broadcast have a PSLR above -10 dB, while more than a quarter of the ambiguity functions of

the NPR broadcast are above -10 dB. This is likely explained by the large number of pauses in

conversation in the NPR broadcast, while there are no such considered silences in a typical



rock broadcast.

Table C1

NPR Rock

Average PSLR  ­14 dB  ­18 dB

PSLR variance      44    19

Average Inst. Bandwidth 179 Hz 1350 Hz

PSLR > ­5 dB 10% 0.02%

PSLR >­10 dB 31% 0.5%

PSLR > ­10 dB 51% 27%

It is curious, however, that the instantaneous bandwidth of the rock station never

reaches the low levels of the NPR station, even during DJ interludes -- and that the NPR

instantaneous bandwidth never reaches the levels of the rock station, even during musical

segments. It is difficult to say with confidence why this is, but one might speculate that this

could be due to the sorts dynamic range compression that a commercial FM station might

employ in order to increase the perceived loudness of the broadcast while still remaining in the

legally defined loudness limits. On the other hand, an NPR station has little need for this sort of

perceived loudness gamesmanship when trying to attract listeners given the more

contemplative style of the broadcast.

Finally, figure C5 presents a scatter plot of the averaged instantaneous bandwidth and



PSLR of the NPR station and the rock station. These data sets are mostly distinct in

instantaneous bandwidth, and the much higher likelihood of the NPR having a poor ambiguity

function is clearly illustrated by this chart. But perhaps most telling are the correlations of

these two data sets. First consider the NPR data -- here, the correlation between PSLR and

instantaneous bandwidth is negative. This is exactly what one would expect, that the

ambiguity functions would be increasingly likely to deteriorate as the randomness of the signal

decreased. A linear fit of the NPR data shows a slope of -0.041 dB/Hz and an intercept of -6.8

dB. On the other hand, the rock station’s ambiguity function shows no such negative

correlation, rather, the linear fit to these data have a positive slope of 0.0014 dB/Hz. The lack of

correlation between instantaneous bandwidth and PSLR for the rock station suggest that

above a certain threshold the instantaneous bandwidth of the broadcast is no longer an

important factor, and that some other factor besides instantaneous bandwidth can

determine the quality of the ambiguity function.



Figure C5, scatter plot of NPR and rock station data, PSLR versus instantaneous bandwidth.

If the reader is interested in watching representative samples of the broadcast           

described above, some of the audio/ambiguity function videos have been made available in            

the supplementary materials of this work.

CONCLUSIONS: AMBIGUITY FUNCTION ANALYSIS

While previous to this work it was known that low-instantaneous bandwidth samples

can be discarded in order to provide improved ambiguity function, these results provide a

framework for a more detailed and considered analysis of how the content of the audio

broadcast affects the ambiguity performance, as well as a more detailed understanding of



the general ambiguity performance that can be expected from each of these types of

broadcast. While researchers in this field already had an accurate heuristic understanding that

music channels are more desirable for passive radar work than a talk-heavy format, we have

implemented tools that allow for visualization and characterization of these sorts of data. This

work aimed to provide more context to the heuristic understanding of the relationship between

different radio broadcasting formats, and in that goal we were successful.

In the future, similar analysis could be undertaken of other formats, such as

country-western FM stations, AM talk radio and FM talk radio. Similarly, digital television

signals could be analyzed to see if different broadcast formats have characteristic ambiguity

performance. Additionally, other measures of ambiguity function quality might be better to use

-- the author used PSLR in part because of the ease of implementing this standard measure in

the compressed timeframe of the project. Integrated side lobe or an estimate of the range

and doppler resolution for the signal might be a more appropriate metrics.



DISCUSSION OF IONOSPHERIC EVENTS: 2010 Aug 03

This particular event was sensed by two receive sites each using a distinct transmitter.             

The Siena College → Dartmouth configuration used WQBJ 103.5FM, a 50kW ERP           

transmitter in Cobleskill, NY at 116 m elevation. WQBJ is 66.5 km from the Siena College               

reference receiver at an azimuth of 295 degrees. WQBJ is 196 km from the Dartmouth              

scatter receiver at an azimuth of 65 degrees. Given that the ionospheric turbulences of             

interest are expected to exist at 100 km altitude or more, a geometric argument is made that                

the minimum possible range at which these turbulence returns will occur is approximately 400             

km [Lind, private comm. Dec 2013] for the SNC→DART configuration that we examine for the              

2010 Aug 03 event.

A list of known events along with the current availability of data is given in Table E-1. The                 

meteor trail event of 2011 July 20 is visible for exactly one 1 second integration time dataframe.                

This type of event is detectable by simple machine vision techniques using histogram            

thresholds (e.g. Otsu histogram thresholding and ROI qualification) but we sought to           

implement more challenging detections requiring a process with “memory” of certain          

characteristics previous frames that inform decisions on the present frame. We focused on the             

2010 Aug 03 event since we had cross-ambiguity data from two site pairs as well as having                

the raw data immediately available for download.



Event Type Event Date Data Ready to
Download

Range Location
[km]

Doppler Extent
[m/s]

Aircraft 2011-Jul-18 No 10 .. 200 -100 .. 100

Meteor trail 2011-Jul-20 Yes < 10 each -25 .. 75

Ionosphere 2006-Dec-14 No 700 .. 800 -500 .. 0

Ionosphere
(SNC→DART)

2010-Aug-03 Yes 700 .. 900 -800 .. -100

Ionosphere
(HAY→ SNC)

2010-Aug-03 Yes 600 .. 850 0 .. 300

Ionosphere
(HAY→ HAY)

2012-Mar-09 Yes 500 .. 900 -400 .. -50

Table E-1: ISIS Selected Event List

The basic geometry of the 2010 Aug 03 event is shown in Fig. E-1, with the background                

color elevation data coming from the ⅓ degree SRTM elevation dataset. Observe the dashed             

lines to the cartoon blast representations of the ionospheric return. It is possible to postulate              

that the return came from northwest of DART rather than south of DART since the DART               

antenna is directed in a northerly direction. Certainly it is possible for a return to leak through a                 

sidelobe of the DART antenna; to get an unambiguous result one would have to invoke              

additional transmitter and/or receiver sites to establish where on the isocontour the true            

return lies. Additionally, we have drawn an arrow directly between WQBJ and DART to             

represent the self-interference that is virtually always a significant factor in passive broadcast            

radars of this type, but which for space and scope constraints we have omitted from this               

report besides showing them in Fig. D-1.

The all-important cross-ambiguity function is computed from the digitally sampled x(t)          

and y(t) as stated in Eqn. E-1 [Lind 2013]. This equation has been deeply analyzed in [Sahr                



1996], and given that many of the actual implementation details are proprietary and unknown             

to us, we will not be able to discuss Eqn. (E-1) in detail. The consequence of Eqn. (E-1) can                  

simply be stated as the cross-ambiguity function is the self-ambiguity function shifted in            

range and Doppler to the location of a simple point scatterer, and scaled by the RCS of the                 

scatter (along with propagation losses). For targets such as the ionospheric turbulence, we            

will see a range of Doppler as per discussion in [Sahr 1996, Lind 2013]. We regret not having                 

the capability to describe this process further in this report.

   [ , ] [t]x [t ]y [t ]x[t ]χ r
2 τ = ∑

 

t
y * − r * − τ − r − τ (E-1)



Figure E-1: Overview of 2010 Aug 03 event bistatic geometry



DESCRIPTION OF METHODOLOGY: BLIND TARGET DETECTION

We will show by example that machine vision techniques typically developed for 2D CCTV             

camera images may be applied to 2D range-Doppler maps that have no relation to traditional              

camera data. For convenience and consistency, we will refer to the 2D range-Doppler map from              

a single incoherent integration interval (e.g. 2, 5, or 10 seconds) as a “dataframe.” The              

particular machine vision process focused on by this project is segmentation. The overall            

process is shown in highly simplified form in Fig. F-1. A more detailed view of the preliminary                

machine vision algorithm for each pixel is presented in Fig. F-2. Fig. F-2 does not show the                

preprocessing step of 2D Wiener filtering that smoothes out clutter in the SCR dataframe.

Figure F-1: Overall passive radar data flow algorithm

Figure F-2: Detail of candidate machine vision algorithm

The basic goal of segmentation is to divide a dataframe into two or more regions              

[Gonzalez], e.g. target and clutter or foreground and background. At least one of these             



dataframe regions would typically be denoted “background,” that is, comprising regions not of            

further interest, and at least one other dataframe region would be denoted “foreground,” that             

is, comprising regions of interest for further processing, classification and tracking.          

Segmentation is rarely a single step process, particularly for dataframes consisting of low SNR             

data.

GAUSSIAN MIXTURE MODEL:

Originally reported by Stauffer and Grimson [1999], the Gaussian Mixture Method          

(GMM) goal is to eliminate a majority of the background pixels. Typically GMM implementations             

experience a few false positives, particularly for strongly non-stationary noise, which manifest           

as isolated pixels falsely declared as foreground. Again, we stress that GMM is a per-pixel              

process and does not incorporate information from adjacent pixels in the basic form            

implemented here. A good example of a raw GMM output exhibiting these false positives on              

the edges of the tree shadows, while mostly correctly detecting human activity is seen at:

http://www.youtube.com/watch?v=rCTqOYFSEmA

Further processing is almost always needed to obtain a more complete dataframe           

segmentation. The block diagram showing the decision process between N=3 Gaussian          

distribution is shown in Fig. F-3. An example frame of MATLAB output is shown in Fig. F-4.                

Notice in Fig. F-4 that there are a substantial number of pixels falsely declared as foreground               

(the white pixels in the binary image), despite the 2D Wiener filter pre-processing. The             

subsequent steps outlined in Fig. F-2 will work to eliminate these false single-pixel declarations.



Figure F-3: Gaussian Mixture Model with background/foreground decision output

Figure F-4: Example GMM output for actual ionospheric return



MORPHOLOGICAL OPERATIONS:

Morphological operations are machine vision operations using set theory to modify a           

dataframe on a pixel-by-pixel basis. In this project we work exclusively with morphological            

erosion and dilation. Morphological erosion is a set process in which a structuring element, in              

this case chosen to be a disk 3 pixels in diameter, is passed over each and every binary pixel                  

region in the image. If such a region cannot completely contain the structuring element, that              

region is eliminated from the binary image. If a region can contain the structuring element,              

then as the structuring element is slid around inside the region, the pixels “touched” by the               

center pixel of the structuring element are preserved. Fig. F-5 shows a cartoon version with              

the rectangular structuring element shown in orange, and the erosion output as the one-pixel             

wide horizontal red line. Note, Fig. F-5 cartoon is not representative of the actual structuring              

element, but was chosen for clarity of the cartoon example. The erosion of actual dataframes is               

shown in Fig. F-6 from MATLAB. Observe in Fig. F-6 that virtually all false positive foreground               

declarations have been eliminated. However, the desired convex hull of pixels representing the            

actual ion-acoustic turbulence return have been eroded down to the point that connected            

components analysis will miss the associations of nearby pixels and declare a false            

negative--that no ionospheric turbulence existed here. We must reassociate the pixel regions           

by performing the next step in the Fig. F-2 process: morphological dilation.



Figure F-5: Morphological erosion example

Figure F-6: Example morphological erosion for actual ionospheric return



Morphological dilation is a set process in which a structuring element is passed over             

pixel regions. Imagine a peg in the center pixel of the structuring element--the result of dilation               

is that any place "touched" by any pixel of the structuring element is declared binary 1. A                

cartoon example of morphological dilation is shown in Fig. F-7. Note that even if the red line in                 

Fig. F-7 had a break up to one-half the diameter of the structuring element, the continuous               

green form seen at the bottom of Fig. F-7 would result. This critical fact is exploited to join                 

associated regions of ionospheric turbulence in the processing of real passive radar data. The             

morphological dilation of actual data in MATLAB using a disk structuring element of diameter             

5 pixels is shown in Fig. F-8. Observe how associated pixels regions of the ionosphericic              

returns have been rejoined. Now the data looks ready for connected component blob analysis,             

the next step in Fig. F-2.

Figure F-7: Morphological dilation example



Figure F-8:  Example morphological dilation output for actual ionospheric returns

CONNECTED COMPONENT and BLOB ANALYSIS:

To make a final declaration on ionospheric target candidates, we consider whether a            

region of sufficient associated pixel extent is observed. This might seem to exclude small-scale             

events--which for now it will--until we gain confidence that not too many false positives are              

generated over a larger trial set of data. At such a point, we could then consider the time                 

dimension via Kalman tracking or further ROI qualification to better positively classify small-scale            



ionospheric targets. We declare as connected any region of contiguous 8-connected pixels.           

8-connected neighbors mean any pixel touching a face or corner of another pixel as depicted in               

Fig. F-8.

Blob analysis uses the connected component regions of pixels and computes the size            

of the oriented minimum bounding box (rectangle) containing the convex hull of a region of              

associated pixels representing the declared foreground (target) pixel [Gonzalez]. The cartoon          

depiction of the convex hull (outlined in purple) of connected component pixels is enclosed by              

the minimum bounding box (outlined in green) as the output of the blob analysis in Fig. F-9.                

Observe how the upper left group of connected pixels has a convex hull, but does pass blob                

analysis, since the area of the minimum bounding box is too small. In our implementation we               

require that:

A < Abb < B

where is the area of the minimum bounding box, A=100, and in the real data Abb            0B = 4 × 1 5     

shown in Fig. F-10.

The blob area analysis threshold keeps isolated dilated clutter regions with a small            

minimum bounding box from being declared a target, while attempting to mitigate           

dataframe-wide shifts in the cross-ambiguity that occur during large shifts in the           

self-ambiguity, as occur even on rock music stations during DJ announcements or a brief quiet              

period during song transitions. A severe example of such a self-ambiguity shift is depicted in              

Fig. C2a for an NPR station. One can better appreciate Fig. F-10 as part of a video sequence.                 

In the Results for Blind Target Detection section we present such a short sequence.



Figure F-8: 4-connected and 8-connected neighbors highlighted in red

Figure F-9: Cartoon example of connected components and blob analysis



Figure F-10: Example Blob Analysis result on ionospheric returns



RESULTS: BLIND TARGET DETECTION

The cross-ambiguity data used for this first-pass effort were the 2010 August 03            

dataset. This data was obtained in the processed state, since the algorithms used as in Fig.               

D-1 are not publicly available. Figure F-10 shows a correct detection. We do experience rare              

Type II errors (false negative) as in Fig. G-1, which are a deficiency of this “first-pass”               

algorithm as we do not yet have memory/tracking as the last step to carry through brief fades                

in ionospheric clutter returns that cause SCR to drop for a single dataframe. Observe in Fig.               

G-1b that the erosion operation has aggressively eliminated the weak SCR auroral return, and             

so the dilation operation will return little if any pixels on the true target return, and so the blob                  

analysis makes a Type II error.

We also experience Type I errors (false positive) as in Fig. G-2, which can occur for the                

first couple dataframes of a new dataframe sequence as the GMM algorithm has “memory”             

and has to learn the statistics of a process to create per-pixel Gaussian models best suited to                

the recent dataframes. Upon major shifts of the self-ambiguity function, the false positives can             

result from the concomitant large shifts of the cross-ambiguity function on the clutter            

background. Fig. G-2a shows the GMM output filled with numerous false positives. Many of             

them are isolated, but enough of them are 8-connected in series to survive the morphological              

erosion step in Fig. G-2b. This forebodes the ill performance in Fig. G-2c, where the clutter               

leakage is enlarged into large connected regions by the morphological dilation. The blob            

analysis will naturally register false positives on the largest associated pixel regions as shown             

in Fig. G-2d. This only happens for the first frame, and immediately thereafter the memory of               

the Gaussian fit states is within a range suitable to recognize this clutter as background and no                



false positives are declared.

Finally, we show a brief sequence of blob analysis in Fig. G-3 showing that sequential              

frames of the highly dynamic ionospheric returns are detected without false positives. As            

noted earlier, occasionally there is a single dataframe of false negative, with the possible             

solutions including Kalman tracking. Observe that for each of the six frames of Fig. G-3, only               

the aurora is detected. The full video can be viewed at:

http://heaviside.bu.edu/~mhirsch/isis/firstPassDet.avi

     Figure G-1a: GMM output Figure G-1b: Erosion output



Figure G-1c: Blob Analysis output -- Type II error -- no detections

    Figure G-2a: GMM output          Figure G-2b: Erosion output



   Figure G-2c: Dilation output

   
Figure G-2d: Dilation output



                Figure G-3a: Frame 1                        Figure G-3b: Frame 2

                Figure G-3c: Frame 3                        Figure G-3d: Frame 4



                      Figure G-3e: Frame 5                        Figure G-3f: Frame 6

The initial results shown in this result have been presented to the project sponsor             

Frank Lind, and via email Dr. Lind has expressed positive comments about the initial results.              

The preference would be to have this code in Python as the rest of the ISIS code is written in                   

Python and C. The OpenCV toolbox is available in Python with the same algorithms, and so a                

future work extension may be to convert the MATLAB code to Python. An obvious future              

extension would be to verify the algorithm performance on further ionospheric videos, when            

the ISIS data becomes available for download. Part of the impetus behind better quantifying the              

self-ambiguity function mentioned earlier in this report was to use this information as            

qualification on some of the less ideal datasets from NPR and talk radio stations. The data we                

presented for the machine vision portion of this report was from a rock station, with the               

relatively stable mean cross-ambiguity shown in Fig. G-4a. An unstable cross-ambiguity is           



shown in Fig. G-4b, which exhibits discontinuities we would expect from a talk/NPR station. A              

possible extension is to know which dataframes to discard based on quantified poor            

self-ambiguity periods.

Figure G-4a: stable cross-ambiguity

Figure G-4b: unstable cross-ambiguity



CONCLUSIONS: BLIND TARGET DETECTION

We have shown that automated detection of ionospheric returns with high probability           

of detection is possible with a very low false detection rate. We have not had the opportunity                

to work with more data yet due to constraints in obtaining data from ISIS. Such limitations may                

be mitigated by running on one of the main ISIS servers itself--which is necessary in general as                

much of the passive radar code is proprietary. Without having to extensively tweak parameters             

-- just with a few observations of the typical range-Doppler extent of a typical ionospheric              

target, we were able to reliably detect the ionosphere with no false positives beyond the first               

frame of training (as is expected and can be programmatically discarded). We feel that more              

data adjacent to times of poor self-ambiguity can be utilized by extending the work in this               

report. Despite the seemingly endless supply of FM broadcast transmitter/receiver         

geometries, the high level of interference in the band, only increasing with the transition to HD               

Radio dictates a need to use stations with less ideal self-ambiguity when using automatic             

machine vision target detection techniques. We have laid down the first steps in the direction              

of real-time blind target detection and the customer has seen the initial results favorably.
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Appendix A: Authorship

While we each contributed to the overall analysis, the primary report writing division of labor
went as follows:

Hirsch Kidd

Introduction Introduction

BACKGROUND: FM BROADCAST BAND
SIGNALS

DESCRIPTION OF METHODOLOGY, RESULTS,
CONCLUSIONS: AMBIGUITY FUNCTION
ANALYSIS

BACKGROUND: BISTATIC RADAR

DESCRIPTION OF METHODOLOGY, RESULTS,
CONCLUSIONS: BLIND TARGET DETECTION

APPENDIX B: MATLAB Code

The MATLAB functions are emailed with this report as a ZIP file. We would be delighted to
make them available by email/web to the future interested reader.

APPENDIX C: Converting raw binary data to HDF5 MATLAB file

This process is given with commands executed on a Linux computer, but with minor
modifications can be executed on a Mac or Windows computer.

1) check that you have installed a Python 2.7 of your choice (e.g. Spyder)
2) Unzip echotek_rfio.tgz into a directory of your choice (e.g. ~/ISIS/python)
3) you have to install each of four Python modules:

1.cd rf_raw_io && sudo python setup.py install && cd ..
2.cd PrecisionTime && sudo python setup.py install && cd ..
3.cd file_access_support && sudo python setup.py install && cd ..
4.cd echotek_raw_io && sudo python setup.py install && cd ..

4) cd echotek_raw_io/tools
5) edit the ecdr_to_mat.py, moving line 89: data_time = float(xb.startSec) +
float(xb.startNanoSec / 1.0E9) up to line 84 (within the try statement).
6) Edit lines 70,71 ref_chip and ref_chan to the numbers you’re interested in.

Then, to convert the .bin files in a directory to .mat files readable by RawReader.m, do (this
example for 2010­Aug­03, rx40, 103.5MHz)
ref_chip=0  ref_chan=1
python ecdr_to_mat.py ­i ~/ISIS/data/2010­08­03/rx40 ­o ~/ISIS/data/2010­08­03/rx40


